<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=207269141220718&amp;ev=PageView&amp;noscript=1">

1 Minuten Lesezeit

Can Do mit KI auch 2019 voll im Trend

Laut einer aktuellen Studie der Strategieberatung Mc Kinsey von November 2018 zu den 10 wichtigsten Trends von KI werden bis 2030 rund 70 Prozent der Unternehmen KI implementieren. Allerdings darf KI hier nicht als reines IT-Thema angesehen werden, sondern muss in der gesamten Unternehmenstätigkeit Beachtung finden. Dabei reichen die Facetten von KI über technische und methodische Trends hin zu Business Trends und gesellschaftlichen Trends.

KIIm Bereich der methodischen Trends ist Can Do mit der KI-basierten Software für erfolg-reiches Projektmanagement voll auf Kurs. Denn neben der Analyse einer Vielzahl von Daten bei der komplexen Projekt-planung, die Verfügbarkeiten einzelner Mitarbeiter und deren Fähigkeiten über alle Abteilungen und Standorte hinweg berücksichtigt, zieht die KI von Can Do Schlüsse und spricht Handlungsempfehlungen aus. Als lernendes Expertensystem baut sie zudem Wissen auf und wendet dieses bei der Einschätzung potentieller Risiken an.

 

Methodische Trends laut Studie von McKinsey

  • Neugier durch Curiosity Learning: Algorithmen werden künftig menschliches Lernen nachbilden können. Den Maschinen von morgen wird ein innerer Antrieb gegeben, der sie neugierig auf Überraschungen
    macht und sie dazu bringt, die Welt zu "erkunden".
  • Gedächtnis durch LSTM Networks: Mit Hilfe sogenannter Long-Term Short-Term Memory (LSTM, Long Short-Term Memory) werden die Netzwerke zunehmend eine Art Gedächtnis entwickeln, um auf bereits
    Erlerntes zurückgreifen zu können.
  • Umgang mit Unsicherheit durch Bayesian Networks: Im Gegensatz zu neuronalen Netzen, die auf Muster- Erkennung mit Massendaten trainiert werden, wird in Bayesian Networks nach dem "warum" gefragt. Somit kann die künstliche Intelligenz Schlüsse ziehen, um sicherere Vorhersagen zu treffen und Wahrscheinlichkeiten zu erhöhen.


Begrenzt wird die KI durch die Grundlagenforschung – und den Transfer in die Praxis. Peter Breuer beschreibt dieses in seinem Beitrag 10-Trends von McKinsey. Die Begrenzung zeigt sich beispielsweise beim selbstfahrenden Auto: Einem Computer beizubringen, die deutschen Verkehrsregeln zu beachten, ist simpel. Ein System zu entwerfen, das etwa nach einer Fahrt über die Landesgrenze die veränderten Bedingungen erfasst, analysiert und das eigene Verhalten anpasst, ist deutlich komplizierter. Wenn Unternehmen das Potenzial künstlicher Intelligenz ausreizen wollen, brauchen sie aber genau solche Systeme, denen der Schritt von statischen hin zu dynamischen Kontexten gelingt. Mit anderen Worten gesagt: Sie müssen lernen!

 

Whitepaper Ressourcenmanagement

Jahresrückblick 2024: Innovationen, Erfolge und neue Perspektiven

Das Jahr 2024 war für Can Do ein wegweisendes Jahr voller spannender Entwicklungen und beeindruckender Innovationen. In diesem Rückblick möchten wir...

Read More

Inspirierende Einblicke beim PM Forum Day des PMI Austria Chapters

Am 13. November 2024 fand der PM Forum Day des PMI® Austria Chapter statt – ein inspirierender Tag voller neuer Perspektiven und Einblicke in die...

Read More